Unequivocal Evidence for Side-Arm Participation in Crystalline Lariat Ether Complexes

Frank R. Fronczek, ${ }^{\dagger}$ Vincent J. Gatto, ${ }^{\ddagger}$ Rose Ann Schultz, ${ }^{\ddagger}$ Steven J. Jungk, ${ }^{+}$William J. Colucci, ${ }^{\dagger}$
Richard D. Gandour,* ${ }^{\dagger}$ and George W. Gokel ${ }^{* \dagger}$
Departments of Chemistry, Louisiana State University
Baton Rouge, Louisiana 70803-1804
University of Maryland
College Park, Maryland 20742
Received June 13, 1983
Considerable study has been made during recent years of syntheses ${ }^{1}$ and structures ${ }^{2}$ of lariat ethers so-called because of resemblance of their molecular models to a lasso and their ability to "rope and tie" cations. ${ }^{3}$ Systematic study of these compounds has provided a conclusive demonstration for intramolecular side arm involvement when $\mathrm{NH}_{4}{ }^{+}$is complexed in MeOH solution ${ }^{4}$ and strong support for such involvement in Na^{+}binding. ${ }^{5}$ Measurements of ${ }^{13} \mathrm{C}$ NMR relaxation times and ${ }^{23} \mathrm{Na}$ line widths suggest that the side arm contributes significantly to the binding of Na^{+}in the nitrogen-pivot compounds and that these are more dynamic complexing agents than are the corresponding C -pivot compounds. ${ }^{6}$ To date, however, there has been no unequivocal evidence on how the neutral donor groups participate. Results reported here of single-crystal X-ray analyses ${ }^{7}$ of two alkali-metal-nitrogen-pivot lariat ether complexes show that the side arms are intramolecularly involved with the ring-bound cation and what the structural requirements are for such complexation in the solid state.

The structure ($R=0.020$ for the correct enantiomorph) of the $\mathrm{K}^{+} \mathrm{I}^{-}$complex of N -(2 -methoxyethyl)monoaza-18-crown-6 (K^{+}-$\left(5-1, \mathrm{I}^{-}\right)$is shown in Figure 1 along with a skeletal drawing of donor atoms and metal ion. The skeletal drawing reveals the arrangement of donor atoms about the metal ion. The macroring donor atoms are disposed in a chair conformation with K^{+}distinctly above the plane of four $(1,4,10,13)$ ring oxygen atoms. This chair conformation is typical of 18 -crown-6-type complexes with K^{+}and results from the macroring's assuming the $\mathrm{D}_{3 \mathrm{~d}}$ conformation. ${ }^{8,9}$ The side-arm oxygen is located underneath the plane in an apical position in the coordination sphere. Iodide occupies the opposite apical position. Binding by the side arm can be pictured as occupying one face of the cavity formed by the macroring donor atoms. The side arm is not cradling the metal ion between it and the macroring but rather is pushing the cation out so that the cation is not immersed so deeply in the ring.

The structure ($R=0.028$ for the correct enantiomorph) of the N, N^{\prime}-bis(2-hydroxyethyl)diaza-18-crown-6-Na ${ }^{+}$complex $\left[\left(\mathrm{Na}^{+} \subset \mathrm{Hl}-22-1 \mathrm{H}\right)\right]$ is depicted in Figure 2 along with a skeletal

[^0]

Figure 1, ORTEP drawing of N-(2-methoxyethyl)monoaza-18-crown-6-K1 complex (left), skeletal drawing of coordination sphere about K^{+}(right).

Figure 2, ORTEP drawing of N, N^{\prime}-bis(2-hydroxyethyl)diaza-18-crown-$6-\mathrm{Na}^{+}$complex (left), skeletal drawing of coordination sphere about Na^{+} (right).

Table 1, Comparison of Sodium Complexes of Cryptates and Lariat

	$\left(\mathrm{Na}^{+} \mathrm{C} 222\right)$	$\begin{gathered} \left(\mathrm{Na}^{+} \mathrm{C}\right. \\ \mathrm{H}-22-1 \mathrm{H}) \end{gathered}$	$\left(\mathrm{Na}^{+} \subset 221\right)$
$\overline{\mathrm{N}-\mathrm{Na}-\mathrm{N}}$	$180^{\circ} \mathrm{a}$	159.5°	$138.1^{\circ} \mathrm{b}$
$R^{\text {b }}$	$1.21 \mathrm{~A}^{a, b}$	1.14 A	$1.10 \AA^{\text {b }}$
$\mathrm{N} \cdots \mathrm{N}$	$5.504 \AA^{a}$	$5.183 \AA$	$4.944 \AA^{\text {b }}$
$\log K_{\mathrm{s}}(\mathrm{MeOH})$	$>8.00^{\circ}$	$4.87{ }^{\text {d }}$	$>8.00^{c}$
($\mathrm{MeOH} /$ water, 95/5)	$7.21{ }^{\text {c }}$	$4.59{ }^{\text {d }}$	$8.84{ }^{\text {c }}$

drawing of donor atoms and the metal ion. The arrangement of the macroring donor atoms in a twist-boat structure is seen in the skeletal drawing. The oxygen atom in each sidearm occupies a "flagpole" position. The structure of $\left(\mathrm{Na}^{+} \subset \mathrm{H} 1-22-1 \mathrm{H}\right)$ is intermediate between those found for cryptate complexes ($\mathrm{Na}^{+} \subset$ $222)^{10}$ and $\left(\mathrm{Na}^{+} \subset 221\right) .{ }^{11}$ A comparison of these three complexes is made in Table I. In $\left(\mathrm{Na}^{+} \subset \mathrm{H} 1-22-1 \mathrm{H}\right)$ and $\left(\mathrm{Na}^{+} \subset 222\right), \mathrm{Na}^{+}$ is octacoordinated while in ($\mathrm{Na}^{+} \subset 221$), it is heptacoordinated. In the lariat complex, Na^{+}is displaced $0.48 \AA$ toward the macroring from the $\mathrm{N}, \ldots \mathrm{N}$ internuclear line. This phenomenon is observed in $\left(\mathrm{Na}^{+} \subset 221\right)$ where Na^{+}is displaced $0.95 \AA$ toward the largest ring. The cavity size of the lariat is intermediate between the two cryptands as seen by two measures: R, mean cavity radius, and $\mathrm{N}, \ldots \mathrm{N}$ distance. Given the effective ionic radii ${ }^{12}$ for Na^{+}(VII) and Na^{+}(VIII) of 1.13 and $1.16 \AA$, respectively the larger binding constant ${ }^{13}\left(\log K_{\mathrm{s}}\right)$ for $\left(\mathrm{Na}^{+} \subset 221\right)$ compared to ($\mathrm{Na}^{+} \subset 222$) has been rationalized ${ }^{11}$ by the better fit of Na^{+}in (221)'s cavity. The lariat's cavity is more flexible than a cryptand's and can, at least to some extent, adjust to an optimum size for each cation. The poorer binding ${ }^{14}$ by the lariat arises, at least in part, from entropic factors since the two donor groups are not physically linked as they are in the cryptands.
In conclusion, the structures demonstrate side arm involvement in the solid state. Although a side arm is cooperating fully in cation

[^1]binding, the remarkable result is that it does not pull the metal ion toward it. Rather, it fills an apical void in the cation's coordination sphere when this space is not filled by macroring donors. The ease of synthesis and the flexibility of the lariats in cation binding promise many applications for these compounds as dynamic complexing agents.

Acknowledgment, G.W.G. thanks W. R. Grace Co. and the National Institutes of Health (GM 29150, GM 29610, and GM 29706) for partial support of this work.

Registry No, N-(2-Methoxyethyl)monoaza-18-crown-6, $\mathrm{K}^{+} 1^{-}, 87226$ -37-7; N, N^{\prime}-bis(2-hydroxyethyl)-4,13-diaza-18-crown-6, $\mathrm{Na}^{+} \mathrm{I}^{-}$, 87249-10-3.

Supplementary Material Available: Listings of atomic coordinates and details of X-ray analyses are available (3 pages). Ordering information is given on current masthead page.

6-Cyanotricyclo[5,5,0,0 ${ }^{2,5}$]dodeca-3,6,8,10,12-pentaene (Cyano-Dewar Heptalene), Synthesis and Isomerizations in Ground and Excited States

Yoshikazu Sugihara,* Shigeharu Wakabayashi, and Ichiro Murata*

Department of Chemistry, Faculty of Science Osaka University, Toyonaka, Osaka 560, Japan

Received June 6, 1983
Stimulated by their intriguing physical and chemical properties, ${ }^{1}$ there has been intense recent interest in the valence isomers of alternant aromatic hydrocarbons. ${ }^{2}$ However, very little is known about valence isomers of nonalternant hydrocarbons. ${ }^{3}$ We have been interested for some time in molecules that are isomers of the nonalternant aromatic hydrocarbon azulene. ${ }^{4}$ In a recent communication, we disclosed the synthesis and properties of 6 methoxytricyclo[5.3.0.0 ${ }^{2,5}$]deca-3,6,8,10-tetraene (2), which corresponds to a Dewar type isomer of 4 -methoxyazulene (1). ${ }^{5}$

1

2

3

4

We now report, for the first time, the synthesis and isomerizations of a Dewar type isomer of 1-cyanoheptalene (3), 6-cyanotricyclo[5.5.0.0 ${ }^{2.5}$]dodeca-3,6,8,10,12-pentaene (4). This study will provide not only a new route to the difficultly accessible substituted heptalenes ${ }^{6}$ but also a clear contrast between the roles

[^2]Scheme I

${ }^{a}$ Propylene oxide, 0.5 equiv of BF_{3} e therate, $\mathrm{CCl}_{4}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}$. ${ }^{b} \mathrm{HC} \equiv \mathrm{CH}, \mathrm{CH}_{3} \mathrm{COCH}_{3}, 100-\mathrm{W}$ high-pressure Hg lamp, $-70^{\circ} \mathrm{C}$. ${ }^{c} \mathrm{HCl} / \mathrm{CH}_{3} \mathrm{OH}$, room temperature, $2.5 \mathrm{~h} .{ }^{d}$ cis- and trans-1-lithio-2-vinylcyclopropane, ether/THF, $-78^{\circ} \mathrm{C}, 2.5 \mathrm{~h} .{ }^{e} 1 \mathrm{~N} \mathrm{HCl}$, room temperature, 0.5 h . ${ }_{f} \mathrm{Al}_{2} \mathrm{O}_{3} /$ benzene. ${ }^{g} \mathrm{TMSCN}, \mathrm{Znl}{ }_{2}$, room temperature. ${ }^{h} \mathrm{POCl}_{3} /$ pyridine, $60-70^{\circ} \mathrm{C}, 2-3 \mathrm{~h} .{ }^{i} \mathrm{DDQ} /$ benzene, $60-70^{\circ} \mathrm{C}, 2 \mathrm{~h}$.
of pentafulvene and heptafulvene chromophores ${ }^{7}$ in the isomerization reactions of 2 and $\mathbf{4}$, respectively.
Our approach to the Dewar heptalene skeleton 4 is outlined in Scheme I. Monoacetalization of cyclopent-2-ene-1,4-dione $(5)^{8}$ with propylene oxide ${ }^{9}$ furnished enone 6 , which was converted to the key precursor 2-methoxybicyclo[3.2.0]hept-2,6-dien-4-one (8) ${ }^{10}$ in 30% yield through 7^{10} by photocycloaddition with acetylene, followed by treatment with methanol saturated with hydrogen chloride. Reaction of 8 with a mixture of cis- and trans-1-lithio-2-vinylcyclopropane ${ }^{11}$ and subsequent treatment with hydrochloric acid gave, after column chromatography on silica gel eluted with benzene and hexane ($1: 1$), seven-membered annelated ketones $9(41 \%)^{10}$ and $10(22 \%)^{10}$ and an uncyclized trans-cyclopropyl derivative 11 (32\%). ${ }^{10}$ The β, γ-unsaturated ketone 10 smoothly gave the desired α, β-unsaturated ketone 9 in 90% yield upon rapid filtration through a short plug of alumina (deactivated with 3% of water, benzene). Treatment of 9 with trimethylsilyl cyanide and zinc iodide ${ }^{12}$ followed by phosphoryl chloride in pyridine ${ }^{13}$ furnished the unsaturated nitrile $\mathbf{1 2}^{10}$ in 15.2% yield. Final conversion of $\mathbf{1 2}$ into 4 , purified by column
(6) (a) Dauben, H. J., Jr.; Bertelli, D. J. J. Am. Chem. Soc. 1961, 83, 4659. (b) Vogel, E.; Königshofen, H.; Wassen, J.; Müllen, K.; Oth, J. F. M. Angew. Chem., Int. Ed. Engl. 1974, l3, 732. (c) Vogel, E.; Ippen, J. Ibid. 1974, I3, 734. (d) Vogel, E.; Hogrefe, F. Ibid. 1974, I3, 735. (e) Paquette, L. A.; Browne, A. R.; Chamot, E. Ibid. 1979, 18, 546, (f) Hafner, K.; Diehl, H.; Süss, H. U. Ibid. 1976, 15, 104. (g) Bernhard, W.; Zumbrunnen, H.-R.; Hansen, H.-J. Chimia 1979, 33, 324. (h) For a review, see: Paquette, L. A. Isr. J. Chem. 1980, 20, 233.
(7) Streitwieser, A., Jr. "Molecular Orbital Theory for Organic Chemists"; Wiley: New York, 1961. Salem, L. "The Molecular Orbital Theory of Conjugated Systems"; W. A. Benjamin: New York, 1966.
(8) DePuy, C. H.; Zaweski, E. F. J. Am. Chem. Soc. 1959, 81, 4920. Rasmusson, G. H.; House, H. O.; Zaweski, E. F.; DePuy, C. H. Org. Synth. 1962, 42, 36
(9) Yoshida, Z.; Kimura, M.; Yoneda, S. Tetrahedron Lett. 1975, 1001.
(10) All new compounds described in this paper gave satisfactory elemental analyses and MS, ${ }^{1} \mathrm{H}$ NMR, and IR spectral data.
(11) Marino, J. P.; Browne, L. J. Tetrahedron Lett. 1976, 3245.
(12) Evans, D. A.; Truesdale, L. K.; Carroll, G. L. J. Chem. Soc., Chem. Commun. 1972, 55. Evans, D. A.; Hoffman, J. M.; Truesdale, L. K. J. Am. Chem. Soc. 1973, 95, 5822. Evans, D. A.; Truesdale, L. K. Tetrahedron Lett. 1973, 4929. Evans, D. A.; Carroll, G. L.; Truesdale, L. K. J. Org. Chem. 1974, 39, 914.
(13) Oda, M.; Yamamuro, A.; Watabe, T. Chem. Lett. 1979, 1427.

[^0]: ${ }^{\dagger}$ Loulsiana State University.
 ${ }^{\mathrm{t}}$ University of Maryland.
 (1) Gokel, G. W.; Dishong, D. M.; Diamond, C. J. J. Chem. Soc., Chem Commun. 1980, 1053-1054. Masuyama, A.; Nakatsuji, Y.; Okahara, M. Tetrahedron Lett. 1981, 22, 4665-4668. Montanarl, F.; Tundo, P. J. Org. Chem. 1982, 47, 1298-1302. Maeda, T.; Ouchi, M.; Kimura, K.; Shono, T. Chem. Lett. 1981, 11, 1573-1574. Fukunishi, K.; Czech, B.; Regen, S. L. J. Org. Chem. 1981, 46, 1218-1221. Czech, B.; Czech, A.; Bartsch, R. A. Tetrahedron Lett. 1983, 24, 1327-1328. Jungk, S. J.; Moore, J. A.; Gandour, R. D. J. Org. Chem. 1983, 48, 1116-1120.
 (2) Cram, D. J.; Trueblood, K. N. Top. Curr. Chem. 1981, 98, 43-106.
 (3) Dishong, D. M.; Diamond, C. J.; Gokel, G. W. Tetrahedron Lett. 1981, 22, 1663-1666.
 (4) Schultz, R. A.; Schlegel, E.; Dishong, D. M.; Gokel, G. W. J. Chem. Soc., Chem. Commun. 1982, 242-243.
 (5) Goli, D. M.; Dishong, D. M.; Diamond, C. J.; Gokel, G. W. Tetrahedron Lett. 1982, 23, 5243-5246.
 (6) Kaifer, A.; Durst, H. D.; Echegoyen, L.; Dishong, D. M.; Schultz, R. A.; Gokel, G. W. J. Org. Chem. 1982, 47, 3195-3197.
 (7) $\left(\mathrm{K}^{+} \subset 5-1\right), \mathrm{KIC}_{15} \mathrm{H}_{27} \mathrm{NO}_{6}$, orthorhombic $P 2_{1} 2_{1} 2_{1}, a=10.733$ (1) \AA, $b=12.806$ (2) $\AA, c=15.762$ (3) $\AA, Z=4, R=0.020$ for 1530 data. $\left(\mathrm{Na}^{+} \subset \mathrm{HI}-22-1 \mathrm{H}\right), \mathrm{NaIC}_{16} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{6}$, monoclinic $P 2_{1}, a=8.027$ (5) $\AA, b=$ 15.618 (4) $\AA, c=9.228$ (4) $\AA, \beta=107.61$ (4) ${ }^{\circ}, Z=2, R=0.028$ for 1820 data.
 (8) Wipff, G.; Weiner, P.; Kollman, P. J. Am. Chem. Soc. 1982, 104, 3249-3258 and references 11-18 cited therein.
 (9) Dale, J. Isr. J. Chem. 1980, 20, 3-11.

[^1]: (10) Moras, D.; Weiss, R. Acta Crystallogr., Sect. B 1973, B29, 396-399.
 (11) Mathieu, F.; Metz, B.; Moras, D.; Weiss, R. J. Am. Chem. Soc. 1978, 100, 4412-4416.
 (12) Shannon, R. D.; Prewitt, C. T. Acta Crystallogr., Sect. B 1969, B25, 925-946.
 (13) Lehn, J.-M.; Sauvage, J. P. J. Am. Chem. Soc. 1975, 97, 6700-6707.
 (14) Goli, D. M.; Gokel, G. W., unpublished results.

[^2]: (1) (a) Renner, C. A.; Katz, T. J.; Pouliquen, J.; Turro, N. J.; Waddel, W. H. J. Am. Chem. Soc. 1975, 97, 2568. (b) Turro, N. J.; McVey, J.; Ramamurthy, V.; Lechtken, P. Angew. Chem., Int. Ed. Engl. 1979, 18, 572. (c) Lechtken, P.; Breslow, R.; Schmidt, A. H.; Turro, N. J. J. Am. Chem. Soc. 1973, 95, 3025 .
 (2) (a) van Tamelen, E. E.; Pappas, S. P. J. Am. Chem. Soc. 1963, 85, 3297. (b) Breslow, R.; Napierski, J.; Schmidt, A. H. Ibid. 1972, 94, 5906. (c) van Tamelen, E. E.; Carty, D. Ibid. 1967, 89, 3922; 1971, 93, 6102. (d) McDonald, R. N.; Frickey, D. G. Ibid. 1968, 90, 5315. (e) Yang, N. C.; Carr, R. V.; Li, E.; McVey, J. K.; Rice, S. A. Ibid. 1974, 96, 2297. (f) Katz, T. J.; Wang, E. J.; Acton, N. Ibid. 1971, 93, 3782. (g) Gandillon, G.; Bianco, B.; Burger, U. Tetrahedron Lett. 1981, 51. (h) Burger, U. Chimia 1979, 33, 147. (i) Burger, U.; Bianco, B. Helv. Chim. Acta 1983, 66, 60. (j) Katz, T. J.; Acton, N. J. Am. Chem. Soc. 1973, 95, 2738.
 (3) Murata, I.; Nakasuji, K. Tetrahedron Lett. 1973, 47. Pagni, R. M.; Watson, C. R., Jr. Ibid. 1973, 59. Pagni, R. M.; Burnett, K.; Hasell, A. C. Ibid. 1977, 163. J. Org. Chem. 1978, 43, 2750. Meinwald, J.; Samuelson, G. E.; Ikeda, M. J. Am. Chem. Soc. 1970, 92, 7604.
 (4) Sugihara, Y.; Sugimura, T.; Murata, I. J. Am. Chem. Soc. 1981, 103, 6738.
 (5) Sugihara, Y.; Sugimura, T.; Murata, I. J. Am. Chem. Soc. 1982, 104, 4295.

